Chuỗi hội tụ nhanh Hằng số Catalan

Hai công thức sau gồm những chuỗi hội tụ nhanh, phù hợp để tính giá trị của hằng số này:

G = 3 ∑ n = 0 ∞ 1 2 4 n ( − 1 2 ( 8 n + 2 ) 2 + 1 2 2 ( 8 n + 3 ) 2 − 1 2 3 ( 8 n + 5 ) 2 + 1 2 3 ( 8 n + 6 ) 2 − 1 2 4 ( 8 n + 7 ) 2 + 1 2 ( 8 n + 1 ) 2 ) − − 2 ∑ n = 0 ∞ 1 2 12 n ( 1 2 4 ( 8 n + 2 ) 2 + 1 2 6 ( 8 n + 3 ) 2 − 1 2 9 ( 8 n + 5 ) 2 − 1 2 10 ( 8 n + 6 ) 2 − 1 2 12 ( 8 n + 7 ) 2 + 1 2 3 ( 8 n + 1 ) 2 ) {\displaystyle {\begin{aligned}G&=3\sum _{n=0}^{\infty }{\frac {1}{2^{4n}}}\left(-{\frac {1}{2(8n+2)^{2}}}+{\frac {1}{2^{2}(8n+3)^{2}}}-{\frac {1}{2^{3}(8n+5)^{2}}}+{\frac {1}{2^{3}(8n+6)^{2}}}-{\frac {1}{2^{4}(8n+7)^{2}}}+{\frac {1}{2(8n+1)^{2}}}\right)-\\&\qquad -2\sum _{n=0}^{\infty }{\frac {1}{2^{12n}}}\left({\frac {1}{2^{4}(8n+2)^{2}}}+{\frac {1}{2^{6}(8n+3)^{2}}}-{\frac {1}{2^{9}(8n+5)^{2}}}-{\frac {1}{2^{10}(8n+6)^{2}}}-{\frac {1}{2^{12}(8n+7)^{2}}}+{\frac {1}{2^{3}(8n+1)^{2}}}\right)\end{aligned}}}

G = π 8 log ⁡ ( 2 + 3 ) + 3 8 ∑ n = 0 ∞ 1 ( 2 n + 1 ) 2 ( 2 n n ) . {\displaystyle G={\frac {\pi }{8}}\log \left(2+{\sqrt {3}}\right)+{\frac {3}{8}}\sum _{n=0}^{\infty }{\frac {1}{(2n+1)^{2}{\binom {2n}{n}}}}.}

Nền tảng lý thuyết cho hai chuỗi trên được đặt ra bởi Broadhurst, cho công thức thứ nhất,[5] và Ramanujan, cho công thức thứ hai.[6] Một thuật toán để tính nhanh hằng số Catalan được xây dựng bởi E. Karatsuba.[7][8]

Tài liệu tham khảo

WikiPedia: Hằng số Catalan http://www.lacim.uqam.ca/~plouffe/IntegerRelations... http://www.lacim.uqam.ca/~plouffe/IntegerRelations... http://functions.wolfram.com/Constants/Catalan/06/... http://mathworld.wolfram.com/CatalansConstant.html http://www-2.cs.cmu.edu/~adamchik/articles/catalan... http://www-2.cs.cmu.edu/~adamchik/articles/csum.ht... http://adsabs.harvard.edu/abs/2007arXiv0706.0356B http://numbers.computation.free.fr/Constants/const... http://ja0hxv.calico.jp/pai/ecatalan.html# //www.ams.org/mathscinet-getitem?mr=1156939